Modeling and analysis of gene expression time-series based on co-expression
نویسندگان
چکیده
In this paper a novel approach is introduced for modeling and clustering gene expression time-series. The radial basis function neural networks have been used to produce a generalized and smooth characterization of the expression time-series. A co-expression coefficient is defined to evaluate the similarities of the models based on their temporal shapes and the distribution of the time points. The profiles are grouped using a fuzzy clustering algorithm incorporated with the proposed co-expression coefficient metric. The results on artificial and real data are presented to illustrate the advantages of the metric and method in grouping temporal profiles. The proposed metric has also been compared with the commonly used correlation coefficient under the same procedures and the results show that the proposed method produces better biologically relevant clusters.
منابع مشابه
Identification of Prognostic Genes in Her2-enriched Breast Cancer by Gene Co-Expression Net-work Analysis
Introduction: HER2-enriched subtype of breast cancer has a worse prognosis than luminal subtypes. Recently, the discovery of targeted therapies in other groups of breast cancer has increased patient survival. The aim of this study was to identify genes that affect the overall survival of this group of patients based on a systems biology approach. Methods: Gene expression data and clinical infor...
متن کاملMultivariate Feature Extraction for Prediction of Future Gene Expression Profile
Introduction: The features of a cell can be extracted from its gene expression profile. If the gene expression profiles of future descendant cells are predicted, the features of the future cells are also predicted. The objective of this study was to design an artificial neural network to predict gene expression profiles of descendant cells that will be generated by division/differentiation of h...
متن کاملMultivariate Feature Extraction for Prediction of Future Gene Expression Profile
Introduction: The features of a cell can be extracted from its gene expression profile. If the gene expression profiles of future descendant cells are predicted, the features of the future cells are also predicted. The objective of this study was to design an artificial neural network to predict gene expression profiles of descendant cells that will be generated by division/differentiation of h...
متن کاملEffects of Treatment with Bone Morphogenetic Protein 4 and Co-culture on Expression of Piwil2 Gene in Mouse Differentiated Embryonic Stem Cells
Background Specific growth factors and feeder layers seem to have important roles in in vitro embryonic stem cells (ESCs) differentiation. In this study,the effects of bone morphogenetic protein 4 (BMP4) and mouse embryonic fibroblasts (MEFs) co-culture system on germ cell differentiation from mouse ESCs were studied. MaterialsAndMethods Cell suspension was prepared from one-day-old embryoid bo...
متن کاملOver Expression of Biologically Active Interferon Beta Using Synthetic Gene in E. coli
In this study, our previously reported novel synthetic gene encoding 166 residues of interferon-? was used for an efficient expression of IFN-?. The synthetic gene was cloned into pET21a expression vector and transferred into E. coli. Recombinant protein was over-expressed in the E. coli. Identity of the recombinant protein was confirmed by western blot analysis. The recombinant protein was bio...
متن کاملIn silico identification of miRNAs and their target genes and analysis of gene co-expression network in saffron (Crocus sativus L.) stigma
As an aromatic and colorful plant of substantive taste, saffron (Crocus sativus L.) owes such properties of matter to growing class of the secondary metabolites derived from the carotenoids, apocarotenoids. Regarding the critical role of microRNAs in secondary metabolic synthesis and the limited number of identified miRNAs in C. sativus, on the other hand, one may see the point how the characte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of neural systems
دوره 15 4 شماره
صفحات -
تاریخ انتشار 2005